1. 中考数学动点问题
动点问题
动点题是近年来中考的的一个热点问题,解这类题目要“以静制动”,即把动态问题,变为静态问题来解。一般方法是抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中两个变量X、Y的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。第三,确定自变量的取值范围,画出相应的图象。
一、例题:
如图,在平行四边形ABCD中,AD=4 cm,∠A=60°,BD⊥AD. 一动点P从A出发,以每秒1 cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD .
(1) 当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;
(2) 当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1 cm的速度匀速运动,在BC上以每秒2 cm的速度匀速运动. 过Q作直线QN,使QN‖PM. 设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为S cm2 .
① 求S关于t的函数关系式;② (附加题) 求S的最大值。
解题思路:
第(1)问比较简单,就是一个静态问题当点P运动2秒时,AP=2 cm,
由∠A=60°,知AE=1,PE= .
∴ SΔAPE=
第(2)问就是一个动态问题了,题目要求面积与运动时间的函数关系式,这就需要我们根据题目,综合分析,分类讨论.
P点从A→B→C一共用了12秒,走了12 cm,
Q 点从A→B用了8秒,B→C用了2秒,
所以t的取值范围是 0≤t≤10
不变量:P、Q 点走过的总路程都是12cm,P点的速度不变,所以AP始终为:t+2
若速度有变化,总路程 =变化前的路程+变化后的路程=变化前的速度×变化点所用时间+变化后的速度×(t-变化点所用时间).
如当8≤t≤10时,点Q所走的路程AQ=1×8+2(t-8)=2t-8
① 当0≤t≤6时,点P与点Q都在AB上运动,
设PM与AD交于点G,QN与AD交于点F,
则AQ=t,AF= ,QF= ,AP=t+2,AG=1+ ,PG= .
∴ 此时两平行线截平行四边形ABCD是一个直角梯形,
其面积为(PG + QF)×AG÷2 S= .
当6≤t≤8时,点P在BC上运动,点Q仍在AB上运动.
设PM与DC交于点G,QN与AD交于点F,
则AQ=t,AF= ,DF=4- (总量减部分量),
QF= ,AP=t+2,BP=t-6(总量减部分量),
CP=AC- AP=12-(t+2)=10-t(总量减部分量),
PG= ,而BD= ,
故此时两平行线截平行四边形ABCD的面积为
平行四边形的面积减去两个三角形面积S= .
当8≤t≤10时,点P和点Q都在BC上运动.
设PM与DC交于点G,QN与DC交于点F,
则AQ=2t-8,CQ= AC- AQ= 12-(2t-8)=20-2t,(难点)
QF=(20-2t) ,CP=10-t,PG= .
∴ 此时两平行线截平行四边形ABCD的面积为S= .
②(附加题)当0≤t≤6时,S的最大值为 ;
当6≤t≤8时,S的最大值为 ;
当8≤t≤10时,S的最大值为 ;
所以当t=8时,S有最大值为 .
二、练习:
1.如图,正方形ABCD的边长为5cm,Rt△EFG中,∠G=90°,FG=4cm,EG=3cm,且点B、F、C、G在直线 上,△EFG由F、C重合的位置开始,以1cm/秒的速度沿直线 按箭头所表示的方向作匀速直线运动.
(1)当△EFG运动时,求点E分别运动到CD上和AB上的时间;
(2)设x(秒)后,△EFG与正方形ABCD重合部分的面积为y(cm ),求y与x的函数关系式;
(3)在下面的直角坐标系中,画出0≤x≤2时(2)中函数的大致图象;如果以O为圆心的圆与该图象交于点P(x, ),与x轴交于点A、B(A在B的左侧),求∠PAB的度数.
2.已知,如图,在直角梯形COAB中,CB‖OA,以O为原点建立平面直角坐标系,A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒,
(1)动点P在从A到B的移动过程中,设△APD的面积为S,试写出S与t的函数关系式,指出自变量的取值范围,并求出S的最大值
(2)动点P从出发,几秒钟后线段PD将梯形COAB的面积分成1:3两部分?求出此时P点的坐标
3.如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(3,0),(3,4)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥AC,交AC于P,连结MP。已知动点运动了x秒。
(1)P点的坐标为( , );(用含x的代数式表示)
(2)试求 ⊿MPA面积的最大值,并求此时x的值。
(3)请你探索:当x为何值时,⊿MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果。
4.如图,在 中, , , 厘米,质点P从A点出发沿线路 作匀速运动,质点Q从AC的中点D同时出发沿线路 作匀速运动逐步靠近质点P,设两质点P、Q的速度分别为1厘米/秒、 厘米/秒( ),它们在 秒后于BC边上的某一点E相遇。(1)求出AC与BC的长度;(2)试问两质点相遇时所在的E点会是BC的中点吗?为什么?(3)若以D、E、C为顶点的三角形与△ABC相似,试分别求出 与 的值;
5.在三角形ABC中, .现有动点P从点A出发,沿射线AB向点B方向运动;动点Q从点C出发,沿射线CB也向点B方向运动.如果点P的速度是 /秒,点Q的速度是 /秒,它们同时出发,求:(1)几秒钟后,ΔPBQ的面积是ΔABC的面积的一半? (2)在第(1)问的前提下,P,Q两点之间的距离是多少?
6.如图,已知直角梯形ABCD中,AD‖BC,∠A=90o,∠C=60o,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿A—D—C折线以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以 cm/s的速度向点A运动,如果⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为ts
(1)请求出⊙O2与腰CD相切时t的值;
(2)在0s<t≤3s范围内,当t为何值时,⊙O1与⊙O2外切?
7.如图,已知直角坐标系内的梯形AOBC(O为原点),AC‖OB,OC⊥BC,AC,OB的长是关于x的方程x2-(k+2)x+5=0的两个根,且S△AOC:S△BOC=1:5。
(1)填空:0C=________,k=________;
(2)求经过O,C,B三点的抛物线的另一个交点为D,动点P,Q分别从O,D同时出发,都以每秒1个单位的速度运动,其中点P沿OB由O→B运动,点Q沿DC由D→C运动,过点Q作QM⊥CD交BC于点M,连结PM,设动点运动时间为t秒,请你探索:当t为何值时,△PMB是直角三角形
2. 中考数学动点问题有动点加速运动的吗
目前没遇到过在运动过程中加速的,有分段改变速度的,但每段都是匀速。
3. 中考数学动点问题,思路如何
当年我中考的时候最后题的办法就是把所有可能添的线都想一遍专看哪个能做出来~(每年最后属题的最后两个或者一个小题都要添线的...)哦还有就是多做很可能会碰到类似的甚至一样的(当然不是最后一题...是最后2或者3~当年我就是碰到了一道一样的...回想下当年数学147瞬间好开心啊...)
4. 中考数学动点问题怎么做
汗 又没有关系式
看题目 数形结合 更具图形来确定关系式
拿来什么公式
要有也是
已知条件+思考+推理=正确答案
5. 一道初三数学题,有关于动点问题
动点问题
题型方法归纳
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或
其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点
1、(2009年齐齐哈尔市)直线 与坐标轴分别交于 两点,动点 同时从 点出发,同时到达 点,运动停止.点 沿线段 运动,速度为每秒1个单位长度,点 沿路线 → → 运动.
(1)直接写出 两点的坐标;
(2)设点 的运动时间为 秒, 的面积为 ,求出 与 之间的函数关系式;
(3)当 时,求出点 的坐标,并直接写出以点 为顶点的平行四边形的第四个顶点 的坐标.
提示:第(2)问按点P到拐点B所有时间分段分类;
第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)
如图,AB是⊙O的直径,弦BC=2cm,
∠ABC=60º.
(1)求⊙O的直径;
(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;
(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为 ,连结EF,当 为何值时,△BEF为直角三角形.
注意:第(3)问按直角位置分类讨论
3、(2009重庆綦江)如图,已知抛物线 经过点 ,抛物线的顶点为 ,过 作射线 .过顶点 平行于 轴的直线交射线 于点 , 在 轴正半轴上,连结 .
(1)求该抛物线的解析式;
(2)若动点 从点 出发,以每秒1个长度单位的速度沿射线 运动,设点 运动的时间为 .问当 为何值时,四边形 分别为平行四边形?直角梯形?等腰梯形?
(3)若 ,动点 和动点 分别从点 和点 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿 和 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为 ,连接 ,当 为何值时,四边形 的面积最小?并求出最小值及此时 的长.
注意:发现并充分运用特殊角∠DAB=60°
当△OPQ面积最大时,四边形BCPQ的面积最小。
二、 特殊四边形边上动点
4、(2009年吉林省)如图所示,菱形 的边长为6厘米, .从初始时刻开始,点 、 同时从 点出发,点 以1厘米/秒的速度沿 的方向运动,点 以2厘米/秒的速度沿 的方向运动,当点 运动到 点时, 、 两点同时停止运动,设 、 运动的时间为 秒时, 与 重叠部分的面积为 平方厘米(这里规定:点和线段是面积为 的三角形),解答下列问题:
(1)点 、 从出发到相遇所用时间是 秒;
(2)点 、 从开始运动到停止的过程中,当 是等边三角形时 的值是 秒;
(3)求 与 之间的函数关系式.
提示:第(3)问按点Q到拐点时间B、C所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。
5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为( ,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S( ),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
注意:第(2)问按点P到拐点B所用时间分段分类;
第(3)问发现∠MBC=90°,∠BCO与∠ABM互余,画出点P运动过程中,
∠MPB=∠ABM的两种情况,求出t值。
利用OB⊥AC,再求OP与AC夹角正切值.
6、(2009年温州)如图,在平面直角坐标系中,点A( ,0),B(3 ,2),C(0,2).动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒.
(1)求∠ABC的度数;
(2)当t为何值时,AB‖DF;
(3)设四边形AEFD的面积为S.
①求S关于t的函数关系式;
②若一抛物线y=x2+mx经过动点E,当S<2 时,求m的取值范围(写出答案即可).
注意:发现特殊性,DE‖OA
7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且
∠AOC=60°,点B的坐标是 ,点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动,设 秒后,直线PQ交OB于点D.
(1)求∠AOB的度数及线段OA的长;
(2)求经过A,B,C三点的抛物线的解析式;
(3)当 时,求t的值及此时直线PQ的解析式;
(4)当a为何值时,以O,P,Q,D为顶点的三角形与 相似?当a 为何值时,以O,P,Q,D为顶点的三角形与 不相似?请给出你的结论,并加以证明.
8、(08黄冈)已知:如图,在直角梯形 中, ,以 为原点建立平面直角坐标系, 三点的坐标分别为 ,点 为线段 的中点,动点 从点 出发,以每秒1个单位的速度,沿折线 的路线移动,移动的时间为 秒.
(1)求直线 的解析式;
(2)若动点 在线段 上移动,当 为何值时,四边形 的面积是梯形 面积的 ?
(3)动点 从点 出发,沿折线 的路线移动过程中,设 的面积为 ,请直接写出 与 的函数关系式,并指出自变量 的取值范围;
(4)当动点 在线段 上移动时,能否在线段 上找到一点 ,使四边形 为矩形?请求出此时动点 的坐标;若不能,请说明理由.
9、(09年黄冈市)如图,在平面直角坐标系xoy中,抛物线 与x轴的交点为点A,与y轴的交点为点B. 过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE‖OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t< 时,△PQF的面积是否总为定值?若是,求出此定值, 若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.
提示:第(3)问用相似比的代换,
得PF=OA(定值)。
第(4)问按哪两边相等分类讨论
①PQ=PF,②PQ=FQ,③QF=PF.
三、 直线上动点
8、(2009年湖南长沙)如图,二次函数 ( )的图象与 轴交于 两点,与 轴相交于点 .连结 两点的坐标分别为 、 ,且当 和 时二次函数的函数值 相等.
(1)求实数 的值;
(2)若点 同时从 点出发,均以每秒1个单位长度的速度分别沿 边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为 秒时,连结 ,将 沿 翻折, 点恰好落在 边上的 处,求 的值及点 的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点 ,使得以 为项点的三角形与 相似?如果存在,请求出点 的坐标;如果不存在,请说明理由.
提示:第(2)问发现
特殊角∠CAB=30°,∠CBA=60°
特殊图形四边形BNPM为菱形;
第(3)问注意到△ABC为直角三角形后,按直角位置对应分类;先画出与△ABC相似的△BNQ ,再判断是否在对称轴上。
9、(2009眉山)如图,已知直线 与 轴交于点A,与 轴交于点D,抛物线 与直线交于A、E两点,与 轴交于B、C两点,且B点坐标为 (1,0)。
⑴求该抛物线的解析式;
⑵动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P。
⑶在抛物线的对称轴上找一点M,使 的值最大,求出点M的坐标。
提示:第(2)问按直角位置分类讨论后画出图形----①P为直角顶点AE为斜边时,以AE为直径画圆与x轴交点即为所求点P,②A为直角顶点时,过点A作AE垂线交x轴于点P,③E为直角顶点时,作法同②;
第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。
10、(2009年兰州)如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标 (长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.
注意:第(4)问按点P分别在AB、BC、CD边上分类讨论;求t值时,灵活运用等腰三角形“三线合一”。
11、(2009年北京市)如图,在平面直角坐标系 中,△ABC三个顶点的坐标分别为
, , ,延长AC到点D,使CD= ,过点D作DE‖AB交BC的延长线于点E.
(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线 将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)设G为y轴上一点,点P从直线 与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明)
提示:第(2)问,平分周长时,直线过菱形的中心;
第(3)问,转化为点G到A的距离加G到(2)中直线的距离和最小;发现(2)中直线与x轴夹角为60°.见“最短路线问题”专题。
12、(2009年上海市)
已知∠ABC=90°,AB=2,BC=3,AD‖BC,P为线段BD上的动点,点Q在射线AB上,且满足 (如图1所示).
(1)当AD=2,且点 与点 重合时(如图2所示),求线段 的长;
(2)在图8中,联结 .当 ,且点 在线段 上时,设点 之间的距离为 , ,其中 表示△APQ的面积, 表示 的面积,求 关于 的函数解析式,并写出函数定义域;
(3)当 ,且点 在线段 的延长线上时(如图3所示),求 的大小.
注意:第(2)问,求动态问题中的变量取值范围时,先动手操作找到运动始、末两个位置变量的取值,然后再根据运动的特点确定满足条件的变量的取值范围。当PC⊥BD时,点Q、B重合,x获得最小值; 当P与D重合时,x获得最大值。
第(3)问,灵活运用SSA判定两三角形相似,即两个锐角三角形或两个钝角三角形可用SSA来判定两个三角形相似;或者用同一法;或者证∠BQP=∠BCP,得B、Q、C、P四点共圆也可求解。
13、(08宜昌)如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.
(1)△ABC与△SBR是否相似,说明理由;
(2)请你探索线段TS与PA的长度之间的关系;
(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.
提示:第(3)问,关键是找到并画出满足条件时最大、最小图形;当p运动到使T与R重合时,PA=TS为最大;当P与A重合时,PA最小。此问与上题中求取值范围类似。
14、(2009年河北)如图,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t = 2时,AP = ,点Q到AC的距离是 ;
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;
(4)当DE经过点C 时,请直接写出t的值.
提示:(3)按哪两边平行分类,按要求画出图形,再结合图形性质求出t值;有二种成立的情形,
DE‖QB,PQ‖BC;
(4)按点P运动方向分类,按要求画出图形再结合图形性质求出t值;有二种情形,
CQ=CP=AQ=t时,
QC=PC=6-t时.
15、(2009年包头)已知二次函数 ( )的图象经过点 , , ,直线 ( )与 轴交于点 .
(1)求二次函数的解析式;
(2)在直线 ( )上有一点 (点 在第四象限),使得 为顶点的三角形与以 为顶点的三角形相似,求 点坐标(用含 的代数式表示);
(3)在(2)成立的条件下,抛物线上是否存在一点 ,使得四边形 为平行四边形?若存在,请求出 的值及四边形 的面积;若不存在,请说明理由.
提示:
第(2)问,按对应锐角不同分类讨论,有两种情形;
第(3)问,四边形ABEF为平行四边形时,E、F两点纵坐标相等,且AB=EF,对第(2)问中两种情形分别讨论。
四、 抛物线上动点
16、(2009年湖北十堰市)如图①, 已知抛物线 (a≠0)与 轴交于点A(1,0)和点B (-3,0),与y轴交于点C.
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与 轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。
第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。
17、(2009年黄石市)正方形 在如图所示的平面直角坐标系中, 在 轴正半轴上, 在 轴的负半轴上, 交 轴正半轴于 交 轴负半轴于 , ,抛物线 过 三点.
(1)求抛物线的解析式;
(2) 是抛物线上 间的一点,过 点作平行于 轴的直线交边 于 ,交 所在直线于 ,若 ,则判断四边形 的形状;
(3)在射线 上是否存在动点 ,在射线 上是否存在动点 ,使得 且 ,若存在,请给予严格证明,若不存在,请说明理由.
注意:第(2)问,发现并利用好NM‖FA且NM=FA;
第(3)问,将此问题分离出来单独解答,不受其它图形的干扰。需分类讨论,先画出合适的图形,再证明。
近三年黄冈中考数学
“坐标几何题”(动点问题)分析
(马铁汉)
07 08 09
动点个数 两个 一个 两个
问题背景 特殊菱形两边上移动 特殊直角梯形三边上移动 抛物线中特殊直角梯形底边上移动
考查难点 探究相似三角形 探究三角形面积函数关系式 探究等腰三角形
考
点 ①菱形性质
②特殊角三角函数
③求直线、抛物线解析式
④相似三角形
⑤不等式
①求直线解析式
②四边形面积的表示
③动三角形面积函数④矩形性质 ①求抛物线顶点坐标
②探究平行四边形
③探究动三角形面积是定值
④探究等腰三角形存在性
特
点 ①菱形是含60°的特殊菱形;
△AOB是底角为30°的等腰三角形。
②一个动点速度是参数字母。
③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。
④通过相似三角形过度,转化相似比得出方程。
⑤利用a、t范围,运用不等式求出a、t的值。 ①观察图形构造特征适当割补表示面积
②动点按到拐点时间分段分类
③画出矩形必备条件的图形探究其存在性
①直角梯形是特殊的(一底角是45°)
②点动带动线动
③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)
④通过相似三角形过度,转化相似比得出方程。
⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)
三年共同点:
①特殊四边形为背景;
②点动带线动得出动三角形;
③探究动三角形问题(相似、等腰三角形、面积函数关系式);
④求直线、抛物线解析式;
⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
大趋势:
6. 中考数学关于动点问题大概有几个类型
动点的个数一般是1到3个,运动变化中抓住不变的量是解题关键,但是解决这类题目也是有规律技巧的,一般动点变化的题目中,肯定有恒定不变的量或者关系分类有多种
7. 近年中考数学动点问题
今年中考的数学动点问题往往是几何图形和函数的结合,或是把几何图形放在平面直角坐标系里,求函数解析式的问题或是求面积问题。
8. 中考数学的动点问题和二次函数题怎么做分类讨论如何不漏
有事动点问题和函数图象总连在一起考,先看懂点是在什么图形上,有什么样的取专值范围属,或题上有没有说明在第几象限,找距离,一般都是证相似,找到各线段用什么表达之后(含未知数,如x),也可以根据三角函数证明。如果还有什么问题,你可以到网络文库里查找关于这类的题,上面都有方法和解析,很实用。
9. 中考数学动点问题的解决方法
1.利用图形想到三角形全等,相似及三角函数
2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)
3.结合图形和题目,得出已知或能间接求出的数据
4.分情况讨论,把每种可能情况列出来,不要漏
5.动点一般在中考都是压轴题,步骤不重要,重要的是思路!
6.动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论