1. 初中几何知识
初中七年级几何知识
1、 过两点有且只有一条直线
2、 两点之间线段最短 。
3、 同角或等角的补角相等。
4 、同角或等角的余角相等 。
5、 过一点有且只有一条直线和已知直线垂直 。
6、 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、 如果两条直线都和第三条直线平行,这两条直线也互相平行
9、 同位角相等,两直线平行
10、 内错角相等,两直线平行
11、 同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、 两直线平行,内错角相等
14、 两直线平行,同旁内角互补
15、 定理 三角形两边的和大于第三边
16、 推论 三角形两边的差小于第三边
17、 三角形内角和定理 三角形三个内角的和等于180°
18、 推论1 直角三角形的两个锐角互余
19、 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、 全等三角形的对应边、对应角相等
22、边角边公理(SAS): 有两边和它们的夹角对应相等的两个三角形全等
23、 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等
24、 推论(AAS): 有两角和其中一角的对边对应相等的两个三角形全等
25、 边边边公理(SSS) 有三边对应相等的两个三角形全等
26、 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 、定理1 在角的平分线上的点到这个角的两边的距离相等
28、 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 、角的平分线是到角的两边距离相等的所有点的集合
30 、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 、推论1 三个角都相等的三角形是等边三角形
36 、推论 2 有一个角等于60°的等腰三角形是等边三角形
37 、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 、直角三角形斜边上的中线等于斜边上的一半
39 、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 、定理1 关于某条直线对称的两个图形是全等形
43 、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
初中八年级几何知识总结
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79、 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81、 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h
83、 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84、 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86、 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90、 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92、 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、 判定定理3 三边对应成比例,两三角形相似(SSS)
95、 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、 性质定理2 相似三角形周长的比等于相似比
98、 性质定理3 相似三角形面积的比等于相似比的平方
99、 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是到圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线
初中九年级几何知识总结
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分“弦所对应的一条弧的”直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2 圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理 圆的切线垂直于经过切点的半径
124、推论1 经过圆心且垂直于切线的直线必经过切点
125、推论2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
弦切角:顶点在圆上,一边与圆相交,另一边与圆相切
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133、推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136、定理 相交两圆的连心线垂直平分两圆的公共弦
137、定理 把圆分成n(n≥3)等份:
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142、正三角形面积√3a/4 a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长扑愎剑篖=n兀R/180
145、扇形面积公式:S扇形=n兀R2/360=LR/2
146、内公切线长= d-(R-r) 外公切线长= d-(R+r)
2. 初中几何的知识有哪些
几何十大公理
1.过两点有且只有一条直线.
2.两点之间,线段最短.
3.垂线段最短.
4.过一点有且只有一条直线与已知直线垂直.
5.过直线外一点有且只有一条直线与已知直线平行.(平行公理)
6.同位角相等,两直线平行.
7.有两边及其夹角对应相等的两个三角形全等.(SAS)
8.有两角及其夹边对应相等的两个三角形全等.(ASA)
9.三边对应相等的两个三角形全等.(SSS)
10.斜边和一条直角边对应相等的两个直角三角形全等.(HL)
《圆》这一章的结论,都是定理、定义或推论,没有公理
我觉得编教材的时候谁是公理并不重要,重要的是让初中生体会这种从基本事实出发进行推理演绎的妙用,学会逻辑推理的基本方法.
其实全等三角形的判定根本不是公理,但是连欧几里德的几何体系也难免有不完善之处.
所以作为初中教材,基本原则应该是避繁就间,条理清晰.
将一些不易证的结论归为公理,可以使学生抓住主要问题,忽略次要问题.
待掌握了一定的知识和能力再去追究完善的公理体系也并不晚.
教材的编著者这样做,不能不说是花了心思的.
几何学是建立在公理基础上通过推理演绎而成的.因而扎实地掌握公理对学习几何作用极大.现总结了10条初中教材所提及的无需证明的最基本结论作为公理.
3. 初中几何关系
以下是常见的几种几何关系
类型一:位置关系
例1:如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:(1)AM=AN;(2)AM⊥AN.
【分析】(1)根据直角三角形两锐角互余可得∠1=∠2,然后利用“边角边”证明△ABM和△NCA全等,根据全等三角形对应边相等即可证明;
(2)根据全等三角形对应角相等可得∠3=∠N,再根据CF⊥AB可得∠4+∠N=90°,所以∠3+∠4=90°,即∠MAN=90°,从而得证.
【解答】证明:(1)∵BE⊥AC,CF⊥AB,
∴∠1+∠BMF=90°,∠2+∠CME=90°,
∵∠BMF=∠CME(对顶角相等),
∴∠1=∠2,
(2)根据(1)可得△ABM≌△NCA,
∴∠3=∠N,
∵CF⊥AB,
∴∠4+∠N=90°,
∴∠3+∠4=90°,
即∠MAN=90°,
因此,AM⊥AN.
【点评】本题考查了全等三角形的判定与性质,已知两组对应边相等,想法证明这两边的夹角相等是解题的关键,思路比较清晰.
类型二:相等关系
例2:如图,在△ABC中,点D在BC上,点E在AD上,AB=AC,EB=EC,试说明:BD=CD
【分析】方法一:利用三角形全等,证明AB=AC,再利用三线合一证明.
方法二:利用线段的垂直平分线的判定和性质证明.
方法二:∵AB=AC,EB=EC,
∴点A在线段BC的垂直平分线上,点E在线段BC垂直平分线上,
∴AE垂直平分线段BC,
∴BD=DC.
【点评】本题考查全等三角形的判定和性质,线段的垂直平分线的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
类型三:和差关系
例3:如图,∠BCA=α,CA=CB,C、E、F分别是直线CD上的三点,且∠BEC=∠CFA=α,请提出对EF,BE,AF三条线段之间数量关系的合理猜想,并证明.
【分析】由题意推出∠BCE=∠CAF,再由AAS定理证△BCE≌△CAF,继而得答案.
【解答】EF=BE+AF.
证明:∵∠BEC=∠CFA=∠α,
∠α=∠BCA,
∠BCA+∠BCE+∠ACF=180°,
∠CFA+∠CAF+∠ACF=180°,
∴∠BCE=∠CAF,
【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
类型四:倍数关系
例4(2018秋·嘉荫县期中)如图,在Rt△ABC中,∠ABC=∠A,∠ACB=90°,D为AB边的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.
当∠EDF绕点D旋转到DE⊥AC于点E时(如图①),易证S△DEF+S△CEF=S△ABC;当∠EDF绕点D旋转到DE和AC不垂直时,在图②和图③这两种情况下,上述结论是否仍成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?请说明你的猜想,不需证明.
【分析】如图②连接CD,证明△CDE≌△BDF,即可得出结论;如图③,同(1)得:△DEC≌△DBF,得出S△DEF=S五边形DBFEC=S△CFE+S△DBC=S△CFE+1/2S△ABC.
【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、图形面积的求法;证明三角形全等是解决问题的关键.
4. 初中几何学什么
满意请采纳。
初中几何学习三角形、特殊的三角形(等腰三角形、等边三角形)、平行四边形、特殊的平行四边形(长方形、菱形、正方形)、圆形。
5. 初中几何
书名:初中几何解题方法大全
图书编号:1138033
出版社:山西教育出版社
定价:19.0
ISBN:754401954
作者:张树义 编
出版日期:2004-04-01
版次:1
开本:小32开
简介:
本书作者长期从事中学数学教学及数学解题方法研究工作。本书囊括了初中几何的全部解题方法,为学生解题提供了有利的依据和手段。例题、习题选自近几年全中国各地的中考题、竞赛题,可谓方法全、题型新。并针对学生易发生的典型错误进行剖析,避免再次发生同类错误。本书对丰富学生的解题思维方法,培养和提高学生的逻辑推理能力、思维能力将起到积极的作用。
本书与课本同步,是一本学习平面几何的实用工具书,可供广大中学生和数学教师参考使用。
目录:
怎样学习初中几何(代序)
基础部分
线段、角
1 怎样数线段和角
2 怎样求线段的长
3 怎档求角的大小
相交线、平行线
1 怎样证明两直线平行
2 怎样证明两条直线互相垂直
3 怎样证明两个角相等
4 怎样求角的大小
5 角的和、差、倍、分的证法
三角形
1 怎样证线段不等(一)
2 利用方程(组)求三角形的角
3 利用方程求三角形的边长
4 角不等的证法
5 利用计算法求证角的和、差、倍、分问题
6 利用全等三角形证明线段或角相等(一)
7 利用垂直的定义证两直线垂直
8 怎样证两线段平行
9 怎样添角平分线问题的辅助线
10 利用距离相等证角相等
11 三角形中的作图
12 利用等腰三角形的性质证两角相等
13 利用“三线合一”证两直线垂直
14 利用“三线合一”证线段相等
15 利用“三线合一”性质证两角相等
16 利用全等三角形证线段或角相等(二)
17 怎样证线段不等(二)
18 利用等角对等边证线段相等
19 利用方程(组)求等腰三角形的角
20 利用全等三角形证明线段或角相等(三)
21 怎样证明等边三角形
22 关于线段的和差问题的证明
23 用加倍延长法证明线段的倍分问题
24 利用线段倍分定理证线段倍分问题(一)
25 用计算法证角相等
26 二倍角问题的辅助线的添法
27 利用中垂线的性质证线段相等
28 怎样添中点问题的辅助线(一)
29 利用勾股定量求线段长
30 用计算法证明线段关系
31 怎样证明线段平方的和、差关系
32 用计算法证两线垂直
33 利用特殖值法解几何题
四边形
……
相似形
解直角三角形
圆
综合部分
初中几何中的常用方法
综合题
配套练习参考答案及提示
做题要求系统化!要多做题,首先从书本做起,别一味去做题!去充分的把概念理解一下!我上初2的时候几何很好!但后来就不行了!主要自己太懒了!能想起来的问题一定自己想只要是自己悟出来的,那绝对是经典!一生受用的!努力吧!别在想什么捷径!有的话就不用学习了!哈哈,哥哥相信你会学习好的!这本书可以看一下!觉得不错!重要的是要系统化!
6. 初中几何(圆)
连接抄AB,因为AC是圆O1的直径,所以∠ABC=90°,所以∠ABE=90°,连接AE则为圆O2的直径,所以∠D=90°,
因为DE=6,CE=10.由勾股定理得CD=8,所以AD=CD-AC=8-6=2,
Rt△ADE中,AE=√6²+2²=2√10,所以圆O2的半径为√10
7. 初中几何
8. 初中几何
解:
所给条件不足,比值不能确定
补一个条件:四边形ABCD是等腰梯形
此时所求比值才等于1/3(此时BC=2AD)
当BC≠2AD时,所求比值不再等于1/3,随BC与AD的比值的变化而变化
如图,两个图形中,上图是等腰梯形,所求比值等于1/3
下图中比值k=b/(2a+2b)
如果b=2a,那么k=1/3
如果b=3a,那么k=3/8
。。。。。。
请检查一下问题,让大家重新解答,谢谢
江苏吴云超祝你天天开心
9. 初中几何怎么学
作为和代数并列为初中数学两大知识点的几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。话虽如此,变形金刚也不是无敌的,最终仍旧是人类的智慧更胜一筹。学大教育的专家表示,实际上,每一道几何题目背后都有着一定的法则和规律,每一类题都有着相似的解题思想,这种思想的集中体现,便是模型(变形金刚的原力所在)。对于几何,我们不仅仅要在战术上坚定执行,在战略层面上也要对几何在初中三年的整体学习有一个明确的了解。
步骤/方法
得模型者得几何,而模型思想的建立又并非一朝一夕,是需要同学们在大量的实战做题和不断总结方法中培养出来的。对于模型的理解和认识,分为很多层面,最浅的是基本的形似,看到图形相仿或相似的题目,能够有意识的联想以前学过的题型并加以运用,套用,这是最简单的模型思想。
高一些的是神似,看到一些关键点,关键线段或是题目所给条件的相似便能够联想到所学知识点,通过推理和演绎逐步取得正确的解法,记住的是一些具体模型,这是第二种层次。
最高的境界是,心中只有很少几种基本模型,这些模型就像种子,看到一道题目就会发芽,开花结果,随着对于题目的深入理解,不断地寻找适合的花朵,每一朵花上面都有着一种具体的模型,而每种模型之间,都会有树枝相连,相互间并不是孤立的,而是借由其他条件贯穿连接的。达到这样的理解才能算是包罗万象,驾轻就熟。
我们对于模型的把控能不应当仅限于会用于具有明显模型特征的题目,对于一些特征并不明显的题目,我们要有能力添加辅助线去挖掘图形当中的隐藏属性。这就要求同学们对于每一种基本图形的理解要十分深刻,不仅仅要认识模型,还要会补全模型,甚至构造模型来解决问题,这对于同学们动手添加辅助线的能力要求就很高了。
学好几何无非做好以下几点想学好几何,一定要注意以下几点:
1、多做题,在起步初期,多见一些题,对一些模型有初步认识。
2、多总结,尽量在老师的帮助下能够总结出一些模型的主要辅助线做法和解题方法。
3、多应用,多用模型解决问题,不要没有方法的撞大运,要根据图形特点思考解法。
4、多完善,不断做题总会有新的知识添加到已有的模型体系中来,不断壮大自己的知识树。
5、多思考,对于任何一道题都有可能存在不止一种方法,每种方法涉及到的模型不尽相同,要能够通过一题多解发现模型之间的相互关系,增强自己对模型的理解深度。
从长远的角度来说,中考几何压轴的考察趋势越来越倾向于竞赛化的趋势,而考察重点则是以三大变化为主题的综合题目。如今三大变换的思想也在不断的渗透在初二几何的题目中来,平移、旋转、轴对称这些技巧也会慢慢被我们所熟识。然而仅仅熟悉并不够,我们还要结合模型把他们灵活掌握并能够精确与用到实际的题目中去,这样才能使我们做几何题目的能力有所提高。
7
初二这一年是模型大爆炸得时期,上学期的全等三角形的模型,下学期的四边形模型以及很多学校在初二暑假就会开设的圆的知识,很多都是需要同学们运用模型思想解决的问题。这些知识点不仅多,而且十分重要,可以说初中几何部分的重点全部集中在初二这一年,故而打好基础,勤加练习,多做总结是我们不得不去完成的任务。