A. 初中英語月考試卷是什麼
這個得問老師去了。月考一般是對前面所學的知識的檢測,特別是重要的單詞、句型、短語、語法點
B. 初一的月考順序是什麼
月考是檢驗你剛來初中的學習情況,不必緊張放平心態。
其實政治歷史都是要考的,希望能幫到你。
C. 初中月考試卷要錢嗎
初中月考試卷不需要錢,因為這個已經包含在學費和加班費中了。
D. 初一月考試卷(數學,英語)下冊
4、 3b2m•(_______)=3b4m+1 -(x-y)5(x-y)4=________ (-2a2b)2÷(_______)=2a
5、 (-2m+3)(_________)=4m2-9 (-2ab+3)2=_____________
6、 如果∠1與∠2互為補角,∠1=72º,∠2=_____º ,若∠3=∠1 ,則∠3的補角為_______º ,理由是__________________________.
7、 在左圖中,若∠A+∠B=180º,∠C=65º,則∠1=_____º,
A 2 D ∠2=______º.
B C
8、 在生物課上,老師告訴同學們:「微生物很小,枝原體直徑只有0.1微米」,這相當於________________米(1米=106微米,請用科學記數法表示).
9、 在進行小組自編自答活動時,小芳給小組成員出了這樣一道題,題目:我國古代數學家祖沖之發現了圓周率π=3.1415926……,取近似值為3.14,是精確到_______位,有______個有效數字,而小明出的題是:如果一年按365天計算,那麼,一年就有31536000秒,精確到萬位時,近似數是_____________秒,有______個有效數字.
10、小明、小剛、小亮三人正在做游戲,現在要從他們三人中選出一人去幫王奶奶幹活,則P(小明被選中)= ________ , P(小明未被選中)=________.
11、隨意擲出一枚骰子,計算下列事件發生的概率標在下圖中.
⑴、擲出的點數是偶數 ⑵、擲出的點數小於7
⑶、擲出的點數為兩位數 ⑷、擲出的點數是2的倍數
0 1/2 1
不可能發生 必然發生
二、 選擇題(2×7=14)
1、今天數學課上,老師講了多項式的加減,放學後,小明回到家拿出課堂筆記,認真的復習老師課上講的內容,他突然發現一道題:(-x2+3xy- y2)-(- x2+4xy- y2)=
- x2_____+y2空格的地方被鋼筆水弄污了,那麼空格中的一項是( )
A 、-7xy B、7xy C、-xy D、xy
2、下列說法中,正確的是( )
A、一個角的補角必是鈍角 B、兩個銳角一定互為餘角
C、直角沒有補角 D、如果∠MON=180º,那麼M、O、N三點在一條直線上
3、數學課上老師給出下面的數據,( )是精確的
A、 2002年美國在阿富汗的戰爭每月耗費10億美元
B、 地球上煤儲量為5萬億噸以上
C、 人的大腦有1×1010個細胞
D、 這次半期考試你得了92分
4、一隻小狗在如圖的方磚上走來走去,最終停在陰影方磚上的概率是( )
A、 B、
C、 D、
5、已知:∣x∣=1,∣y∣= ,則(x20)3-x3y2的值等於( )
A、- 或- B、 或 C、 D、-
6、下列條件中不能得出a‖b 的是( ) c
A、∠2=∠6 B、∠3+∠5=180º 1 2 a
C、∠4+∠6=180º D、∠2=∠8 5 6 b
7、下面四個圖形中∠1與∠2是對頂角的圖形有( )個
A、0 B、1 C、2 D、3
三、 計算題(4×8=32)
⑴ -3(x2-xy)-x(-2y+2x) ⑵ (-x5)•x3n-1+x3n•(-x)4
⑶ (x+2)(y+3)-(x+1)(y-2) ⑷ (-2m2n)3•mn+(-7m7n12)0-2(mn)-4•m11•n8
⑸ (5x2y3-4x3y2+6x)÷6x,其中x=-2,y=2 ⑹ (3mn+1)(3mn-1)-(3mn-2)2
用乘法公式計算:
⑺ 9992-1 ⑻ 20032
四、 推理填空(1×7=7)
A 已知:如圖,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2
E 求證:CD⊥AB
F 證明:∵DG⊥BC,AC⊥BC(___________)
D ∴∠DGB=∠ACB=90º(垂直的定義)
∴DG‖AC(_____________________)
B C ∴∠2=_____(_____________________)
∵∠1=∠2(__________________) ∴∠1=∠DCA(等量代換)
∴EF‖CD(______________________) ∴∠AEF=∠ADC(____________________)
∵EF⊥AB ∴∠AEF=90º ∴∠ADC=90º 即CD⊥AB
五、 解答題(1題6分,2題6分,3題⑴2分,⑵2分,⑶3分,總19分)
1、 小康村正在進行綠地改造,原有一正方形綠地,現將它每邊都增加3米,面積則增加了63平方米,問原綠地的邊長為多少?原綠地的面積又為多少?
2、 已知:如圖,AB‖CD,FG‖HD,∠B=100º,FE為∠CEB的平分線,
求∠EDH的度數.
A F C
E
B H
G
D
3、下圖是明明作的一周的零用錢開支的統計圖(單位:元)
分析上圖,試回答以下問題:
⑴、 周幾明明花的零用錢最少?是多少?他零用錢花得最多的一天用了多少?
⑵、 哪幾天他花的零用錢是一樣的?分別為多少?
⑶、 你能幫明明算一算他一周平均每天花的零用錢嗎?
能力測試卷(50分)
(B卷)
一、 填空題(3×6=18)
1、 房間里有一個從外表量長a米、寬b米、高c米的長方形木箱子,已知木板的厚度為x米,那麼這個木箱子的容積是________________米3.(不展開)
2、 式子4-a2-2ab-b2的最大值是_______.
3、 若2×8n×16n=222,則n=________.
4、 已知 則 =__________.
5、 一個小男孩擲一枚均勻的硬幣兩次,則兩次均朝上的概率為_________.
6、 A 如圖,∠ABC=40º,∠ACB=60º,BO、CO平分∠ABC和∠ACB,
D E DE過O點,且DE‖BC,則∠BOC=_______º.
B C
二、 選擇題(3×4=12)
1、一個角的餘角是它的補角的 ,則這個角為( )
A、60º B、45º C、30º D、90º
2、對於一個六次多項式,它的任何一項的次數( )
A、都小於6 B、都等於6 C、都不小於6 D、都不大於6
3、式子-mn與(-m)n的正確判斷是( )
A、 這兩個式子互為相反數 B、這兩個式子是相等的
C、 當n為奇數時,它們互為相反數;n為偶數時它們相等
D、 當n為偶數時,它們互為相反數;n為奇數時它們相等
4、已知兩個角的對應邊互相平行,這兩個角的差是40º,則這兩個角是( )
A、140º和100º B、110º和70º C、70º和30º D、150º和110º
四、解答題(7×2=14)
1、若多項式x2+ax+8和多項式x2-3x+b相乘的積中不含x2、x3項,求(a-b)3-(a3-b3)的值.
第01題 阿基米德分牛問題Archimedes' Problema Bovinum 太陽神有一牛群,由白、黑、花、棕四種顏色的公、母牛組成.
在公牛中,白牛數多於棕牛數,多出之數相當於黑牛數的1/2+1/3;黑牛數多於棕牛數,多出之數相當於花牛數的1/4+1/5;花牛數多於棕牛數,多出之數相當於白牛數的1/6+1/7.
在母牛中,白牛數是全體黑牛數的1/3+1/4;黑牛數是全體花牛數1/4+1/5;花牛數是全體棕牛數的1/5+1/6;棕牛數是全體白牛數的1/6+1/7.
問這牛群是怎樣組成的? 第02題 德.梅齊里亞克的法碼問題The Weight Problem of Bachet de Meziriac 一位商人有一個40磅的砝碼,由於跌落在地而碎成4塊.後來,稱得每塊碎片的重量都是整磅數,而且可以用這4塊來稱從1至40磅之間的任意整數磅的重物.
問這4塊砝碼碎片各重多少? 第03題 牛頓的草地與母牛問題Newton's Problem of the Fields and Cows a頭母牛將b塊地上的牧草在c天內吃完了;
a'頭母牛將b'塊地上的牧草在c'天內吃完了;
a"頭母牛將b"塊地上的牧草在c"天內吃完了;
求出從a到c"9個數量之間的關系? 第04題 貝韋克的七個7的問題Berwick's Problem of the Seven Sevens 在下面除法例題中,被除數被除數除盡:
* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * *
* * * * * *
* * * * * 7 *
* * * * * * *
* 7 * * * *
* 7 * * * *
* * * * * * *
* * * * 7 * *
* * * * * *
* * * * * *
用星號(*)標出的那些數位上的數字偶然被擦掉了,那些不見了的是些什麼數字呢? 第05題 柯克曼的女學生問題Kirkman's Schoolgirl Problem 某寄宿學校有十五名女生,她們經常每天三人一行地散步,問要怎樣安排才能使每個女生同其他每個女生同一行中散步,並恰好每周一次? 第06題 伯努利-歐拉關於裝錯信封的問題The Bernoulli-Euler Problem of the Misaddressed letters 求n個元素的排列,要求在排列中沒有一個元素處於它應當佔有的位置. 第07題 歐拉關於多邊形的剖分問題Euler's Problem of Polygon Division 可以有多少種方法用對角線把一個n邊多邊形(平面凸多邊形)剖分成三角形? 第08題 魯卡斯的配偶夫婦問題Lucas' Problem of the Married Couples n對夫婦圍圓桌而坐,其座次是兩個婦人之間坐一個男人,而沒有一個男人和自己的妻子並坐,問有多少種坐法? 第09題 卡亞姆的二項展開式Omar Khayyam's Binomial Expansion 當n是任意正整數時,求以a和b的冪表示的二項式a+b的n次冪. 第10題 柯西的平均值定理Cauchy's Mean Theorem 求證n個正數的幾何平均值不大於這些數的算術平均值. 第11題 伯努利冪之和的問題Bernoulli's Power Sum Problem 確定指數p為正整數時最初n個自然數的p次冪的和S=1p+2p+3p+…+np. 第12題 歐拉數The Euler Number 求函數φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1當x無限增大時的極限值. 第13題 牛頓指數級數Newton's Exponential Series 將指數函數ex變換成各項為x的冪的級數. 第14題 麥凱特爾對數級數Nicolaus Mercator's Logarithmic Series 不用對數表,計算一個給定數的對數. 第15題 牛頓正弦及餘弦級數Newton's Sine and Cosine Series 不用查表計算已知角的正弦及餘弦三角函數. 第16題 正割與正切級數的安德烈推導法Andre's Derivation of the Secant and Tangent Series 在n個數1,2,3,…,n的一個排列c1,c2,…,cn中,如果沒有一個元素ci的值介於兩個鄰近的值ci-1和ci+1之間,則稱c1,c2,…,cn為1,2,3,…,n的一個屈折排列.
試利用屈折排列推導正割與正切的級數. 第17題 格雷戈里的反正切級數Gregory's Arc Tangent Series 已知三條邊,不用查表求三角形的各角. 第18題 德布封的針問題Buffon's Needle Problem 在檯面上畫出一組間距為d的平行線,把長度為l(小於d)的一根針任意投擲在檯面上,問針觸及兩平行線之一的概率如何? 第19題 費馬-歐拉素數定理The Fermat-Euler Prime Number Theorem 每個可表示為4n+1形式的素數,只能用一種兩數平方和的形式來表示. 第20題 費馬方程The Fermat Equation 求方程x2-dy2=1的整數解,其中d為非二次正整數. 第21題 費馬-高斯不可能性定理The Fermat-Gauss Impossibility Theorem 證明兩個立方數的和不可能為一立方數. 第22題 二次互反律The Quadratic Reciprocity Law (歐拉-勒讓德-高斯定理)奇素數p與q的勒讓德互反符號取決於公式
(p/q).(q/p)=(-1)[(p-1)/2].[(q-1)/2]. 第23題 高斯的代數基本定理Gauss' Fundamental Theorem of Algebra 每一個n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n個根. 第24題 斯圖謨的根的個數問題Sturm's Problem of the Number of Roots 求實系數代數方程在已知區間上的實根的個數. 第25題 阿貝爾不可能性定理Abel's Impossibility Theorem 高於四次的方程一般不可能有代數解法. 第26題 赫米特-林德曼超越性定理The Hermite-Lindemann Transcedence Theorem 系數A不等於零,指數α為互不相等的代數數的表達式A1eα1+A2eα2+A3eα3+…不可能等於零. 第27題 歐拉直線Euler's Straight Line 在所有三角形中,外接圓的圓心,各中線的交點和各高的交點在一直線—歐拉線上,而且三點的分隔為:各高線的交點(垂心)至各中線的交點(重心)的距離兩倍於外接圓的圓心至各中線的交點的距離. 第28題 費爾巴哈圓The Feuerbach Circle 三角形中三邊的三個中點、三個高的垂足和高的交點到各頂點的線段的三個中點在一個圓上. 第29題 卡斯蒂朗問題Castillon's Problem 將各邊通過三個已知點的一個三角形內接於一個已知圓. 第30題 馬爾法蒂問題Malfatti's Problem 在一個已知三角形內畫三個圓,每個圓與其他兩個圓以及三角形的兩邊相切. 第31題 蒙日問題Monge's Problem 畫一個圓,使其與三已知圓正交. 第32題 阿波洛尼斯相切問題The Tangency Problem of Apollonius. 畫一個與三個已知圓相切的圓. 第33題 馬索若尼圓規問題Macheroni's Compass Problem. 證明任何可用圓規和直尺所作的圖均可只用圓規作出. 第34題 斯坦納直尺問題Steiner's Straight-edge Problem 證明任何一個可以用圓規和直尺作出的圖,如果在平面內給出一個定圓,只用直尺便可作出. 第35題 德里安倍立方問題The Deliaii Cube-doubling Problem 畫出體積為一已知立方體兩倍的立方體的一邊. 第36題 三等分一個角Trisection of an Angle 把一個角分成三個相等的角. 第37題 正十七邊形The Regular Heptadecagon 畫一正十七邊形. 第38題 阿基米德π值確定法Archimedes' Determination of the Number Pi 設圓的外切和內接正2vn邊形的周長分別為av和bv,便依次得到多邊形周長的阿基米德數列:a0,b0,a1,b1,a2,b2,…其中av+1是av、bv的調和中項,bv+1是bv、av+1的等比中項. 假如已知初始兩項,利用這個規則便能計算出數列的所有項. 這個方法叫作阿基米德演算法. 第39題 富斯弦切四邊形問題Fuss' Problem of the Chord-Tangent Quadrilateral 找出半徑與雙心四邊形的外接圓和內切圓連心線之間的關系.(註:一個雙心或弦切四邊形的定義是既內接於一個圓而同時又外切於另一個圓的四邊形) 第40題 測量附題Annex to a Survey 利用已知點的方位來確定地球表面未知但可到達的點的位置. 第41題 阿爾哈森彈子問題Alhazen's Billiard Problem 在一個已知圓內,作出一個其兩腰通過圓內兩個已知點的等腰三角形. 第42題 由共軛半徑作橢圓An Ellipse from Conjugate Radii 已知兩個共軛半徑的大小和位置,作橢圓. 第43題 在平行四邊形內作橢圓An Ellipse in a Parallelogram, 在規定的平行四邊形內作一內切橢圓,它與該平行四邊形切於一邊界點. 第44題 由四條切線作拋物線A Parabola from Four Tangents 已知拋物線的四條切線,作拋物線. 第45題 由四點作拋物線A Parabola from Four Points. 過四個已知點作拋物線. 第46題 由四點作雙曲線A Hyperbola from Four Points. 已知直角(等軸)雙曲線上四點,作出這條雙曲線. 第47題 范.施古登軌跡題Van Schooten's Locus Problem 平面上的固定三角形的兩個頂點沿平面上一個角的兩個邊滑動,第三個頂點的軌跡是什麼? 第48題 卡丹旋輪問題Cardan's Spur Wheel Problem. 一個圓盤沿著半徑為其兩倍的另一個圓盤的內緣滾動時,這個圓盤上標定的一點所描出的軌跡是什麼? 第49題 牛頓橢圓問題Newton's Ellipse Problem. 確定內切於一個已知(凸)四邊形的所有橢圓的中心的軌跡. 第50題 彭賽列-布里昂匈雙曲線問題The Poncelet-Brianchon Hyperbola Problem 確定內接於直角(等邊)雙曲線的所有三角形的頂垂線交點的軌跡. 第51題 作為包絡的拋物線A Parabola as Envelope 從角的頂點,在角的一條邊上連續n次截取任意線段e,在另一條邊上連續n次截取線段f,並將線段的端點注以數字,從頂點開始,分別為0,1,2,…,n和n,n-1,…,2,1,0.
求證具有相同數字的點的連線的包絡為一條拋物線. 第52題 星形線The Astroid 直線上兩個標定的點沿著兩條固定的互相垂直的軸滑動,求這條直線的包絡. 第53題 斯坦納的三點內擺線Steiner's Three-pointed Hypocycloid 確定一個三角形的華萊士(Wallace)線的包絡. 第54題 一個四邊形的最接近圓的外接橢圓The Most Nearly Circular Ellipse Circumscribing a Quadrilateral 一個已知四邊形的所有外接橢圓中,哪一個與圓的偏差最小? 第55題 圓錐曲線的曲率The Curvature of Conic Sections 確定一個圓錐曲線的曲率. 第56題 阿基米德對拋物線面積的推算Archimedes' Squaring of a Parabola 確定包含在拋物線內的面積. 第57題 推算雙曲線的面積Squaring a Hyperbola 確定雙曲線被截得的部分所含的面積. 第58題 求拋物線的長Rectification of a Parabola 確定拋物線弧的長度. 第59題 笛沙格同調定理(同調三角形定理)Desargues' Homology Theorem (Theorem of Homologous Triangles) 如果兩個三角形的對應頂點連線通過一點,則這兩個三角形的對應邊交點位於一條直線上.
反之,如果兩個三角形的對應邊交點位於一條直線上,則這兩個三角形的對應頂點連線通過一點. 第60題 斯坦納的二重元素作圖法Steiner's Double Element Construction 由三對對應元素所給定的重迭射影形,作出它的二重元素. 第61題 帕斯卡六邊形定理Pascal's Hexagon Theorem 求證內接於圓錐曲線的六邊形中,三雙對邊的交點在一直線上. 第62題 布里昂匈六線形定理Brianchon's Hexagram Theorem 求證外切於圓錐曲線的六線形中,三條對頂線通過一點. 第63題 笛沙格對合定理Desargues' Involution Theorem 一條直線與一個完全四點形*的三雙對邊的交點與外接於該四點形的圓錐曲線構成一個對合的四個點偶. 一個點與一個完全四線形*的三雙對頂點的連線和從該點向內切於該四線形的圓錐曲線所引的切線構成一個對合的四個射線偶.
*一個完全四點形(四線形)實際上含有四點(線)1,2,3,4和它們的六條連線交點23,14,31,24,12,34;其中23與14、31與24、12與34稱為對邊(對頂點). 第64題 由五個元素得到的圓錐曲線A Conic Section from Five Elements 求作一個圓錐曲線,它的五個元素——點和切線——是已知的. 第65題 一條圓錐曲線和一條直線A Conic Section and a Straight Line 一條已知直線與一條具有五個已知元素——點和切線——的圓錐曲線相交,求作它們的交點. 第66題 一條圓錐曲線和一定點A Conic Section and a Point 已知一點及一條具有五個已知元素——點和切線——的圓錐曲線,作出從該點列到該曲線的切線. 第67題 斯坦納的用平面分割空間Steiner's Division of Space by Planes n個平面最多可將整個空間分割成多少份? 第68題 歐拉四面體問題Euler's Tetrahedron Problem 以六條棱表示四面體的體積. 第69題 偏斜直線之間的最短距離The Shortest Distance Between Skew Lines 計算兩條已知偏斜直線之間的角和距離. 第70題 四面體的外接球The Sphere Circumscribing a Tetrahedron 確定一個已知所有六條棱的四面體的外接球的半徑. 第71題 五種正則體The Five Regular Solids 將一個球面分成全等的球面正多邊形. 第72題 正方形作為四邊形的一個映象The Square as an Image of a Quadrilateral 證明每個四邊形都可以看作是一個正方形的透視映象. 第73題 波爾凱-許瓦爾茲定理The Pohlke-Schwartz Theorem 一個平面上不全在同一條直線上的四個任意點,可認為是與一個已知四面體相似的四面體的各隅角的斜映射. 第74題 高斯軸測法基本定理Gauss' Fundamental Theorem of Axonometry 正軸測法的高斯基本定理:如果在一個三面角的正投影中,把映象平面作為復平面,三面角頂點的投影作為零點,邊的各端點的投影作為平面的復數,那麼這些數的平方和等於零. 第75題 希帕查斯球極平面射影Hipparchus' Stereographic Projection 試舉出一種把地球上的圓轉換為地圖上圓的保形地圖射影法. 第76題 麥卡托投影The Mercator Projection 畫一個保形地理地圖,其坐標方格是由直角方格組成的. 第77題 航海斜駛線問題The Problem of the Loxodrome 確定地球表面兩點間斜駛線的經度. 第78題 海上船位置的確定Determining the Position of a Ship at Sea 利用天文經線推演算法確定船在海上的位置. 第79題 高斯雙高度問題Gauss' Two-Altitude Problem 根據已知兩星球的高度以確定時間及位置. 第80題 高斯三高度問題Gauss' Three-Altitude Problem 從在已知三星球獲得同高度瞬間的時間間隔,確定觀察瞬間,觀察點的緯度及星球的高度. 第81題 刻卜勒方程The Kepler Equation 根據行星的平均近點角,計算偏心及真近點角. 第82題 星落Star Setting 對給定地點和日期,計算一已知星落的時間和方位角. 第83題 日晷問題The Problem of the Sundial 製作一個日晷. 第84題 日影曲線The Shadow Curve 當直桿置於緯度φ的地點及該日太陽的赤緯有δ值時,確定在一天過程中由桿的一點投影所描繪的曲線. 第85題 日食和月食Solar and Lunar Eclipses 如果對於充分接近日食時間的兩個瞬間太陽和月亮的赤經、赤緯以及其半徑均為已知,確定日食的開始和結束,以及太陽表面被隱蔽部分的最大值. 第86題 恆星及會合運轉周期Sidereal and Synodic Revolution Periods 確定已知恆星運轉周期的兩共面旋轉射線的會合運轉周期. 第87題 行星的順向和逆向運動Progressive and Retrograde Motion of Planets 行星什麼時候從順向轉為逆向運動(或反過來,從逆向轉為順向運動)? 第88題 蘭伯特慧星問題Lambert's Comet Prolem 藉助焦半徑及連接弧端點的弦,來表示慧星描繪拋物線軌道的一段弧所需的時間. 第89題 與歐拉數有關的斯坦納問題Steiner's Problem Concerning the Euler Number 如果x為正變數,x取何值時,x的x次方根為最大? 第90題 法格乃諾關於高的基點的問題Fagnano's Altitude Base Point Problem 在已知銳角三角形中,作周長最小的內接三角形. 第91題 費馬對托里拆利提出的問題Fermat's Problem for Torricelli 試求一點,使它到已知三角形的三個頂點距離之和為最小. 第92題 逆風變換航向Tacking Under a Headwind 帆船如何能頂著北風以最快的速度向正北航行? 第93題 蜂巢(雷阿烏姆爾問題)The Honeybee Cell (Problem by Reaumur) 試採用由三個全等的菱形作成的頂蓋來封閉一個正六稜柱,使所得的這一個立體有預定的容積,而其表面積為最小. 第94題 雷奇奧莫塔努斯的極大值問題Regiomontanus' Maximum Problem 在地球表面的什麼部位,一根垂直的懸桿呈現最長?(即在什麼部位,可見角為最大?) 第95題 金星的最大亮度The Maximum Brightness of Venus 在什麼位置金星有最大亮度? 第96題 地球軌道內的慧星A Comet Inside the Earth's Orbit 慧星在地球的軌道內最多能停留多少天? 第97題 最短晨昏蒙影問題The Problem of the Shortest Twilight 在已知緯度的地方,一年之中的哪一天晨昏蒙影最短? 第98題 斯坦納的橢圓問題Steiner's Ellipse Problem 在所有能外接(內切)於一個已知三角形的橢圓中,哪一個橢圓有最小(最大)的面積? 第99題 斯坦納的圓問題Steiner's Circle Problem 在所有等周的(即有相等周長的)平面圖形中,圓有最大的面積.
反之:在有相等面積的所有平面圖形中,圓有最小的周長. 第100題 斯坦納的球問題Steiner's Sphere Problem 在表面積相等的所有立體中,球具有最大體積.
在體積相等的所有立體中,球具有最小的表面.
E. 小渡2018中學初一月考試卷的答案
小渡復2018中學初一月考試卷制的答案,
不屬於公開信息。
如有合法需要,
可詢問學校辦公室、教務處。
潼南區小渡鎮初級中學校,位於小渡鎮人民街221號,
佔地面積18025平方米,
建築面積10224平方米。
有教職工62人,其中高級教師4人。
有10個教學班,學生近400人。
學校先後獲得潼南縣初中教育先進集體、學業抽考先進集體、文明單位等榮譽稱號。
F. 初中月考試卷全縣都是一樣的嗎
看學校去的。。學校不同就不同
G. 誰有初一月考的試卷提供一下吧~~~~~謝謝嘍
有理數練習
練習一(B級)
(一)計算題:
(1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5)
(二)用簡便方法計算:
(1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
(三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25,
求:(-X)+(-Y)+Z的值
(四)用">","0,則a-ba (C)若ba (D)若a<0,ba
(二)填空題:
(1)零減去a的相反數,其結果是_____________; (2)若a-b>a,則b是_____________數; (3)從-3.14中減去-π,其差應為____________; (4)被減數是-12(4/5),差是4.2,則減數應是_____________; (5)若b-a<-,則a,b的關系是___________,若a-b<0,則a,b的關系是______________; (6)(+22/3)-( )=-7
(三)判斷題:
(1)一個數減去一個負數,差比被減數小. (2)一個數減去一個正數,差比被減數小. (3)0減去任何數,所得的差總等於這個數的相反數. (4)若X+(-Y)=Z,則X=Y+Z (5)若a<0,b|b|,則a-b>0
練習二(B級)
(一)計算: (1)(+1.3)-(+17/7) (2)(-2)-(+2/3) (3)|(-7.2)-(-6.3)+(1.1)| (4)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)
(二)如果|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.
(三)若a,b為有理數,且|a|<|b|試比較|a-b|和|a|-|b|的大小
(四)如果|X-1|=4,求X,並在數軸上觀察表示數X的點與表示1的點的距離.
練習三(A級)
(一)選擇題:
(1)式子-40-28+19-24+32的正確讀法是( ) (A)負40,負28,加19,減24與32的和 (B)負40減負28加19減負24加32 (C)負40減28加19減24加32 (D)負40負28加19減24減負32 (2)若有理數a+b+C<0,則( ) (A)三個數中最少有兩個是負數 (B)三個數中有且只有一個負數 (C)三個數中最少有一個是負數 (D)三個數中有兩個是正數或者有兩個是負數 (3)若m<0,則m和它的相反數的差的絕對值是( ) (A)0 (B)m (C)2m (D)-2m (4)下列各式中與X-y-Z訴值不相等的是( ) (A)X-(Y-Z) (B)X-(Y+Z) (C)(X-y)+(-z) (D)(-y)+(X-Z)
(二)填空題:
(1)有理數的加減混合運算的一般步驟是:(1)________;(2)_________;(3)________ _______;(4)__________________. (2)當b0,(a+b)(a-1)>0,則必有( ) (A)b與a同號 (B)a+b與a-1同號 (C)a>1 (D)b1 (6)一個有理數和它的相反數的積( ) (A)符號必為正 (B)符號必為負 (C)一不小於零 (D)一定不大於零 (7)若|a-1|*|b+1|=0,則a,b的值( ) (A)a=1,b不可能為-1 (B)b=-1,a不可能為1 (C)a=1或b=1 (D)a與b的值相等 (8)若a*B*C=0,則這三個有理數中( ) (A)至少有一個為零 (B)三個都是零 (C)只有一個為零 (D)不可能有兩個以上為零
(二)填空題:
(1)有理數乘法法則是:兩數相乘,同號__________,異號_______________,並把絕對值_____, 任何數同零相乘都得__________________. (2)若四個有理數a,b,c,d之積是正數,則a,b,c,d中負數的個數可能是______________; (3)計算(-2/199)*(-7/6-3/2+8/3)=________________; (4)計算:(4a)*(-3b)*(5c)*1/6=__________________; (5)計算:(-8)*(1/2-1/4+2)=-4-2+16=10的錯誤是___________________; (6)計算:(-1/6)*(-6)*(10/7)*(-7/10)=[(-1/6)*(-6)][(+10/7)*(-7/10)]=-1的根據是_______
(三)判斷題:
(1)兩數之積為正,那麼這兩數一定都是正數; (2)兩數之積為負,那麼這兩個數異號; (3)幾個有理數相乘,當因數有偶數個時,積為正; (4)幾個有理數相乘,當積為負數時,負因數有奇數個; (5)積比每個因數都大.
練習(四)(B級)
(一)計算題:
(1)(-4)(+6)(-7) (2)(-27)(-25)(-3)(-4) (3)0.001*(-0.1)*(1.1) (4)24*(-5/4)*(-12/15)*(-0.12) (5)(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7) (6)(-24/7)(11/8+7/3-3.75)*24
(二)用簡便方法計算:
(1)(-71/8)*(-23)-23*(-73/8) (2)(-7/15)*(-18)*(-45/14) (3)(-2.2)*(+1.5)*(-7/11)*(-2/7) (三)當a=-4,b=-3,c=-2,d=-1時,求代數式(ab+cd)(ab-cd)的值.
(四)已知1+2+3+......+31+32+33=17*33,計算下式
1-3+2-6+3-9-12+...+31-93+32-96+33-99的值
練習五(A級)
(一)選擇題:
(1)已知a,b是兩個有理數,如果它們的商a/b=0,那麼( ) (A)a=0且b≠0 (B)a=0 (C)a=0或b=0 (D)a=0或b≠0 (2)下列給定四組數1和1;-1和-1;0和0;-2/3和-3/2,其中互為倒數的是( ) (A)只有 (B)只有 (C)只有 (D)都是 (3)如果a/|b|(b≠0)是正整數,則( ) (A)|b|是a的約數 (B)|b|是a的倍數 (C)a與b同號 (D)a與b異號 (4)如果a>b,那麼一定有( ) (A)a+b>a (B)a-b>a (C)2a>ab (D)a/b>1
(二)填空題:
(1)當|a|/a=1時,a______________0;當|a|/a=-1時,a______________0;(填>,0,則a___________0; (11)若ab/c0,則b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3 (C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106 (4)若a為有理數,且a2>a,則a的取值范圍是( ) (A)a<0 (B)0<1 (C)a1 (D)a>1或a<0 (5)下面用科學記數法表示106000,其中正確的是( ) (A)1.06*105 (B)10.6*105 (C)1.06*106 (D)0.106*107 (6)已知1.2363=1.888,則123.63等於( ) (A)1888 (B)18880 (C)188800 (D)1888000 (7)若a是有理數,下列各式總能成立的是( ) (A)(-a)4=a4 (B)(-a)3=A4 (C)-a4=(-a)4 (D)-a3=a3 (8)計算:(-1)1-(-2)2-(-3)3-(-4)4所得結果是( ) (A)288 (B)-288 (C)-234 (D)280
(二)填空題:
(1)在23中,3是________,2是_______,冪是________;若把3看作冪,則它的底數是________,
指數是________; (2)根據冪的意義:(-2)3表示________相乘; (-3)2v表示________相乘;-23表示________. (3)平方等於36/49的有理數是________;立方等於-27/64的數是________ (4)把一個大於10的正數記成a*10n(n為正整數)的形成,a的范圍是________,這里n比原來的整
數位數少_________,這種記數法稱為科學記數法; (5)用科學記數法記出下面各數:4000=___________;950000=________________;地球
的質量約為49800...0克(28位),可記為________; (6)下面用科學記數法記出的數,原來各為多少 105=_____________;2*105=______________; 9.7*107=______________9.756*103=_____________ (7)下列各數分別是幾位自然數 7*106是______位數 1.1*109是________位數; 3.78*107是______位數 1010是________位數; (8)若有理數m 0,b0 (B)a-|b|>0 (C)a2+b3>0 (D)a<0 (6)代數式(a+2)2+5取得最小值時的a值為( ) (A)a=0 (B)a=2 (C)a=-2 (D)a0 (B)b-a>0 (C)a,b互為相反數; (D)-ab (C)a
(5)用四捨五入法得到的近似數1.20所表示的准確數a的范圍是( )
(A)1.195≤a<1.205 (B)1.15≤a<1.18 (C)1.10≤a<1.30 (D)1.200≤a<1.205 (6)下列說法正確的是( ) (A)近似數3.80的精確度與近似數38的精確度相同; (B)近似數38.0與近似數38的有效數字個數一樣 (C)3.1416精確到百分位後,有三個有效數字3,1,4; (D)把123*102記成1.23*104,其有效數字有四個.
(二)填空題:
(1)寫出下列由四捨五入得到的近似值數的精確度與有效數字: (1)近似數85精確到________位,有效數字是________; (2)近似數3萬精確到______位,有效數字是________; (3)近似數5200千精確到________,有效數字是_________; (4)近似數0.20精確到_________位,有效數字是_____________. (2)設e=2.71828......,取近似數2.7是精確到__________位,有_______個有效數字;
取近似數2.7183是精確到_________位,有_______個有效數字. (3)由四捨五入得到π=3.1416,精確到0.001的近似值是π=__________; (4)3.1416保留三個有效數字的近似值是_____________;
(三)判斷題:
(1)近似數25.0精確以個痊,有效數字是2,5; (2)近似數4千和近似數4000的精確程度一樣; (3)近似數4千和近似數4*10^3的精確程度一樣; (4)9.949精確到0.01的近似數是9.95.
練習八(B級)
(一)用四捨五入法對下列各數取近似值(要求保留三個有效數字): (1)37.27 (2)810.9 (3)0.0045078 (4)3.079
(二)用四捨五入法對下列各數取近似值(要求精確到千位): (1)37890.6 (2)213612.4 (3)1906.57
(三)計算(結果保留兩個有效數字): (1)3.14*3.42 (2)972*3.14*1/4
練習九
(一)查表求值:
(1)7.042 (2)2.482 (3)9.52 (4)2.0012 (5)123.42 (6)0.12342 (7)1.283 (8)3.4683 (9)(-0.5398)3 (10)53.733
(二)已知2.4682=6.901,不查表求24.682與0.024682的值
(三)已知5.2633=145.7,不查表求
(1)0.52633 (2)0.05263 (3)52.632 (4)52633
(四)已知21.762^2=473.5,那麼0.0021762是多少 保留三個有效數字的近似值是多少
(五)查表計算:半徑為77cm的球的表面積.(球的面積=4π*r2)
有理數練習題
鑒於部分學校可能會舉行入學實驗班的選拔考試,可能會涉及到初一的部分內容。我們特地選編了這份由理數練習題,供同學們練習,難度可能高於一些選拔考試的題目(有理數部分)。這份練習題也可以作為初一學習後有理數後使用。
一 填空題
1.-(- )的倒數是_________,相反數是__________,絕對值是__________。
2.若|x|+|y|=0,則x=__________,y=__________。
3.若|a|=|b|,則a與b__________。
4.因為到點2和點6距離相等的點表示的數是4,有這樣的關系 ,那麼到點100和到點999距離相等的數是_____________;到點 距離相等的點表示的數是____________;到點m和點–n距離相等的點表示的數是________。
5.計算: =_________。
6.已知 ,則 =_________。
7.如果 =2,那麼x= .
8.到點3距離4個單位的點表示的有理數是_____________。
9.________________________范圍內的有理數經過四捨五入得到的近似數3.142。
10.小於3的正整數有_____.
11. 如果m<0,n>0,|m|>|n|,那麼m+n__________0。
12.你能很快算出 嗎?
為了解決這個問題,我們考察個位上的數為5的正整數的平方,任意一個個位數為5的正整數可寫成10n+5(n為正整數),即求 的值,試分析 ,2,3……這些簡單情形,從中探索其規律。
⑴通過計算,探索規律:
可寫成 ;
可寫成 ;
可寫成 ;
可寫成 ;
………………
可寫成________________________________
可寫成________________________________
⑵根據以上規律,試計算 =
13.觀察下面一列數,根據規律寫出橫線上的數,
- ; ;- ; ; ; ;……;第2003個數是 。
14. 把下列各數填在相應的集合內。
整數集合:{ ……}
負數集合:{ ……}
分數集合:{ ……}
非負數集合:{ ……}
正有理數集合:{ ……}
負分數集合:{ ……}
二 選擇題
15.(1)下列說法正確的是( )
(A)絕對值較大的數較大;
(B)絕對值較大的數較小;
(C)絕對值相等的兩數相等;
(D)相等兩數的絕對值相等。
16. 已知a<c<0,b>0,且|a|>|b|>|c|,則|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等於( )
A.-3a+b+c B.3a+3b+c C.a-b+2c D.-a+3b-3c
17.下列結論正確的是( )
A. 近似數1.230和1.23的有效數字一樣
B. 近似數79.0是精確到個位的數,它的有效數字是7、9
C. 近似數3.0324有5個有效數字
D. 近似數5千與近似數5000的精確度相同
18.兩個有理數相加,如果和比其中任何加數都小,那麼這兩個加數( )
(A)都是正數 (B)都是負數 (C)互為相反數 (D)異號
19. 如果有理數 ( )
A. 當
B.
C.
D. 以上說法都不對
20.兩個非零有理數的和為正數,那麼這兩個有理數為( )
(A)都是正數 (B)至少有一個為正數
(C)正數大於負數 (D)正數大於負數的絕對值,或都為正數。
三計算題
21. 求下面各式的值(-48)÷6-(-25)×(-4)
(2)5.6+[0.9+4.4-(-8.1)];
(3)120×( );
(4)
22. 某單位一星期內收入和支出情況如下:+853.5元,+237.2元,-325元,+138.5元,-280元,-520元,+103元,那麼,這一星期內該單位是盈餘還是虧損?盈餘或虧損多少元?
提示:本題中正數表示收入,負數表示支出,將七天的收入或支出數相加後,和為正數表示盈餘,和為負數表示虧損。
23. 某地一周內每天的最高氣溫與最低氣溫記錄如下表,哪天的溫差最大哪天的溫差最小?
星期 一 二 三 四 五 六 七
最高氣溫 10ºC 11ºC 12ºC 9ºC 8ºC 9ºC 8ºC
最低氣溫 2ºC 0ºC 1ºC -1ºC -2ºC -3ºC -1ºC
24、正式排球比賽,對所使用的排球的重量是有嚴格規定的。檢查5個排球的重量,超過規定重量的克數記作正數,不足規定重量的克數記作負數,檢查結果如下表:
+15 -10 +30 -20 -40
指出哪個排球的質量好一些(即重量最接近規定重量)?你怎樣用學過的絕對值知識來說明這個問題?
25. 已知 ; ;
(1)猜想填空:
(2)計算①
②23+43+63+983+……+1003
26.探索規律將連續的偶2,4,6,8,…,排成如下表:
2 4 6 8 10
12 14 16 18 20
22 24 26 28 30
32 34 36 38 40
… …
(1) 十字框中的五個數的和與中間的數和16有什麼關系?
(2) 設中間的數為x ,用代數式表示十字框中的五個數的和.
(3) 若將十字框上下左右移動,可框住另外的五位數,其它五位數的和能等於201嗎?如能,寫出這五位數,如不能,說明理由。
27.設y=ax5+bx3+cx-5,其中a,b,c,為常數,已知當x= -5時,y=7,求當x=5時,求y的值。
有理數練習題參考答案
一 填空題
1. 4, - , .提示:題雖簡單,但這類概念題在七年級的考試中幾乎必考。
2. 0,0.提示:|x|≥0,|y|≥0.∴x=0,y=0.
3.相等或者互為相反數。提示:互為相反數的絕對值相等 。
4. 549.5, , .提示:到數軸上兩點相等的數的中點等於這兩數和的一半.
5. 0.提示:每相鄰的兩項的和為0。
6. -8.提示: ,4+a=0,a-2b=0,解得:a= -4,b= -2. = -8.
7. x-3=±2。x=3±2,x=5或x=1.
8. -1或7。提示:點3距離4個單位的點表示的有理數是3±4。
9. 3.1415-3.1424.提示:按照四捨五入的規則。
10.1,2.提示:大於零的整數稱為正整數。
11. <0.提示:有理數的加法的符號取決於絕對值大的數。
12. =5625=100×5×(5+1)+25; =7225=100×8×(8+1)+25;
=100×10×(10+1)+25=11025.
13. , , .提示:這一列數的第n項可表示為(-1)n .
14. 提示:(1)集合是指具有某一特徵的一類事物的全體,注意不要漏掉數0,題目中只是具體的幾個符合條件的數,只是一部分,所以通常要加省略號。
(2)非負數表示不是負數的所有有理數,應為正數和零,那麼非正數表示什麼呢?(答:負數和零)
答案:整數集合:{ ……}
負數集合:{ ……}
分數集合:{ ……}
非負數集合:{ ……}
正有理數集合:{ ……}
負分數集合:{ ……}
二 選擇題
15. D.提示:對於兩個負數來說,絕對值小的數反而大,所以A錯誤。對於兩個正數來說,絕對值大的數大,所以B錯誤。互為相反數的兩個數的絕對值相等。
16.A.提示:-a+b-(-c)-(a+b)+(b+c)-(a+c)= -3a+b+c
17. C.提示:有效數字的定義是從左邊第一位不為零的數字起,到右邊最後一個數字結束。18.B
19.C 提示:當n為奇數時, , <0. 當n為偶數時, , <0.所以n為任意自然數時,總有 <0成立.
20. D.提示:兩個有理數想加,所得數的符號由絕對值大的數覺得決定。
三計算題
21. 求下面各式的值
(1)-108
(2)19 .提示:先去括弧,後計算。
(3)-111 .提示: 120×( )
120×( )
=120×(- )+120× -120×
= -111
(4) .提示;
=1- +
=
22. 提示:本題中正數表示收入,負數表示支出,將七天的收入或支出數相加後,和為正數表示盈餘,和為負數表示虧損。
解:(+853.5)+(+237.2)+(-325)+(+138.5)+(-520)+(-280)+(+103)
=[(+853.5)+(+237.2)+(+138.5)+(+103)]+[(-325)+(-520)+(-280)]
=(+1332.2)+(-1125)
=+207.2
故本星期內該單位盈餘,盈餘207.2元。
23. 提示:求溫差利用減法,即最高溫度的差,再比較它們的大小。
解:周一溫差:10-2=8(ºC)
周二溫差:11-0=11(ºC)
周三溫差:12-1=11(ºC)
周四溫差:9-(-1)=10(ºC)
周五溫差:8-(-2)=10(ºC)
周六溫差:9-(-3)=12(ºC)
周日溫差:8-(-1)=9(ºC)
所以周六溫差最大,周一溫差最小。
24、
解:第二隻排球質量好一些,利用這些數據的絕對值的大小來判斷排球的質量,絕對值越小說明越接近規定重量,因此質量也就好一些。
25.
(1) (2)①25502500;提示:原式=
②原式=
=23×13+23×23+23×33+23×43+23×53+……+23×503
=23(13+23+33+43+53+……+503)
=8×
=13005000
26.
(1) 十字框中的五個數的和等於中間的5倍。
(2) 5x
(3) 不能,假設5x=201.x=40.2.不是整數.所以不存在這么一個x.
27.y=ax5+bx3+cx-5,y+5= ax5+bx3+cx,當x=-5時,y+5=12.
-(y+5)=-ax5-bx3-cx=a(-x)5+b(-x)3+c(-x)
∴當x=5時,a(-5)5+b(-5)3+c(-5)=-12;
a(-5)5+b(-5)3+c(-5)-5= -17
H. 初中作文《月考試卷發下來之後》
月考後的反思
時間如流水般淌過,轉眼間考試也已結束,試卷也發下來了.望著試卷上的分數,我驚訝了.因為這並不是我真正想要的分數.為什麼我不能考得再高一些呢!於是,我開始自我檢查.
我平時不上課不認真,地理竟然還沒及格,為此,我想出了幾個辦法.1)在做題前,時刻要記得還有個"";2)解答題時,不要急於下筆,要先在草稿紙上列出這道題的主要步驟,然後按照步驟一步步做下來,不忽略每一個細節,盡量把每一道題都答得完整漂亮;3)平時多做一些不同類型的題,這樣就會對大多數題型熟悉,拿到試卷心中就有把握;4)適當做一些計算方面的練習,讓自己不在計算方面失分.我想如果我能做到我以上提到的這幾眯,我一定能把考試中的失誤降到最低.因此,我一定會盡力做到以上幾點的.
但我想僅靠以上幾點還是不夠的,我還就該擁有幾點科學應試技巧.於是,我根據我自己的實際情況想出了幾點.第一點:拿到考卷後,應把考卷整體審視一遍,看一看哪些題比較容易,哪些題比較難.第二點:先從簡單的題做起,把那些好拿的分數全部拿過來.第三點:如果有選擇題不會,亂蒙也要寫上一個.因為如果你寫了你就有的機會,總比沒有機會好.第四點:遇到難題,實在寫不出來的話,就過.不要死死地盯著那道題,而忽略了別的題.第五點:考完後,認真地檢查,看看自己有沒有把題目看錯或抄錯.
在下一次考試中,我一定會盡自己最大的努力做到最好.
一、學好課本知識。
學習的最重要階段是預習。也就是說在老師上課之前,你先得自己學習一下課文,在預習中要盡量主動地解決問題,把不懂的問題記下來,在上課時跟老師、同學一起學習討論。課本要反復閱讀,直到把問題看的透徹了、明白了。
二、注意課外積累。
適當的課外閱讀是很有必要的。進入了緊張的學習階段,我們不可能再有大量的課余時間進行閱讀,因此,閱讀時要有選擇。我們應廣泛瀏覽各種書籍和報紙雜志,從電視、廣播、網路上獲取信息,並有條理的做下筆記。要關心社會生活,了解社會動態,使自己的思想要不斷進步。這樣不僅能使我們積累更多知識,更能豐富我們的生活。
三、加強寫作訓練。
我們學習語文的一個重要目的就是寫作。提高寫作能力要從點點滴滴做起。課外積累是寫作的基礎,要學會對文章的細讀,精彩的篇章最好能背誦。如果腹內空空,是寫不出好文章的。除此之外,注意觀察生活、感悟生活,堅持不懈的記日記,有感而發的寫隨筆,都是幫助我們寫好作文的有效途徑。寫好的作文要反復修改,也可以請教老師、同學的意見,精益求精。
這次考試之所以沒有考好,總結原因如下:
1 平時沒有養成細致認真的習慣,考試的時候答題粗心大意、馬馬虎虎,導致很多題目會做卻被扣分甚至沒有做對。
2 准備不充分。毛主席說,不打無准備之仗。言外之意,無准備之仗很難打贏,我卻沒有按照這句至理名言行事,導致這次考試吃了虧。
3 沒有解決好興趣與課程學習的矛盾。自己有很多興趣,作為一個人,一個完整的人,一個明白的人,當然不應該同機器一樣,讓自己的興趣被平白無故抹煞,那樣不僅悲慘而且無知,但是,如果因為自己的興趣嚴重耽擱了學習就不好了,不僅不好,有時候真的是得不償失。
失敗了怎麼辦?認真反思是首先的:
第一,這次失敗的原因是什麼?要認真思考,挖掘根本的原因;
第二,你接下來要干什麼?確定自己的目標,不要因為失敗不甘心接著走,而是要正確地衡量自己。看看想要什麼,自己的優勢在什麼地方,弱勢是什麼;
第三,確定目標。明確自己想要的,制定計劃,按部就班的走。
失敗不可怕,可怕的是一蹶不振以及盲目的追求。
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習
I. 初中月考的試卷都是誰出的題 所有中學的月考試卷都一樣的嗎
出卷子的當然是本校老師,當然你應該無法知道是誰。且每次應該都不一樣,像我們的數學(本人初二),初一上學期是其他老師出的,初一下學期第一次是我們班主任出的。
因為是各出各的,卷子肯定不一樣啦。