1. 中學生用什麼計算器比較好
學生用的一般是標准函數計算器,學校老師會推薦的吧,比如卡西歐啊。之前的fx-82ES PLUS A就很多 中學生在用,不過貌似最近出新款中文機了,還沒有開始賣。
2. 需要100道適合初中生的計算題
一元一次方程
選擇題
1.已知(x+y)∶(x-y)=3∶1,則x∶y=( )。
A、3∶1 B、2∶1 C、1∶1 D、1∶2
2.方程-2x+ m=-3的解是3,則m的值為( )。
A、6 B、-6 C、 D、-18
3.在方程6x+1=1,2x= ,7x-1=x-1,5x=2-x中解為 的方程個數是( )。
A、1個 B、2個 C、3個 D、4個
4.根據「a的3倍與-4絕對值的差等於9」的數量關系可得方程( )。
A、|3a-(-4)|=9 B、|3a-4|=9
C、3|a|-|-4|=9 D、3a-|-4|=9
5.若關於x的方程 =4(x-1)的解為x=3,則a的值為( )。
A、2 B、22 C、10 D、-2
答案與解析
答案:1、B 2、A 3、B 4、D 5、C
解析:
1.分析:本題考查對等式進行恆等變形。
由(x+y)∶(x-y)=3∶1,知x+y=3(x-y),化簡得:x+y=3x-3y,
得2x-4y=0,即x=2y,x∶y=2∶1。
2.分析:∵ 3是方程-2x+ m=-3的解,
∴ -2×3+ m=-3,
即-6+ m=-3,
∴ m=-3+6,——根據等式的基本性質1
∴ m=6,——根據等式的基本性質2
∴ 選A。
3.分析:6x+1=1的解是0,2x= 的解是 ,7x-1=x-1的解是0,5x=2-x的解是 。
4.略。
5.分析:因為x=3是方程 =4(x-1)的解,故將x=3代入方程滿足等式。
一、 多變數型
多變數型一元一次方程解應用題是指在題目往往有多個未知量,多個相等關系的應用題。這些未知量只要設其中一個為x,其他未知量就可以根據題目中的相等關系用含有x的代數式來表示,再根據另一個相等關系列出一個一元一次方程即可。
例一:(2005年北京市人教)夏季,為了節約用電,常對空調採取調高設定溫度和清洗設備兩種措施。某賓館先把甲、乙兩種空調的設定溫度都調高1℃,結果甲種空調比乙種空調每天多節電27度;再對乙種空調清洗設備,使得乙種空調每天的總節電量是只將溫度調高1℃後的節電量的1.1倍,而甲種空調節電量不變,這樣兩種空調每天共節電405度。求只將溫度調高1℃後兩種空調每天各節電多少度?
分析:本題有四個未知量:調高溫度後甲空調節電量、調高溫度後乙空調節電量、清洗設備後甲空調節電量、清洗設備後乙空調節電量。相等關系有調高溫度後甲空調節電量-調高溫度後乙空調節電量=27、清洗設備後乙空調節電量=1.1×調高溫度後乙空調節電量、調高溫度後甲空調節電量=清洗設備後甲空調節電量、清洗設備後甲空調節電量+清洗設備後乙空調節電量=405。根據前三個相等關系用一個未知數設出表示出四個未知量,然後根據最後一個相等關系列出方程即可。
解:設只將溫度調高1℃後,乙種空調每天節電x度,則甲種空調每天節電 度。依題意,得:
解得:
答:只將溫度調高1℃後,甲種空調每天節電207度,乙種空調每天節電180度。
二、 分段型
分段型一元一次方程的應用是指同一個未知量在不同的范圍內的限制條件不同的一類應用題。解決這類問題的時候,我們先要確定所給的數據所處的分段,然後要根據它的分段合理地解決。
例二:(2005年東營市)某水果批發市場香蕉的價格如下表:
購買香蕉數
(千克) 不超過
20千克 20千克以上
但不超過40千克 40千克以上
每千克價格 6元 5元 4元
張強兩次共購買香蕉50千克(第二次多於第一次),共付出264元, 請問張強第一次、第二次分別購買香蕉多少千克?
分析:由於張強兩次共購買香蕉50千克(第二次多於第一次),那麼第二次購買香蕉多於25千克,第一次少於25千克。由於50千克香蕉共付264元,其平均價格為5.28元,所以必然第一次購買香蕉的價格為6元/千克,即少於20千克,第二次購買的香蕉價格可能5元,也可能4元。我們再分兩種情況討論即可。
解:
1) 當第一次購買香蕉少於20千克,第二次香蕉20千克以上但不超過40千克的時候,設第一次購買x千克香蕉,第二次購買(50-x)千克香蕉,根據題意,得:
6x+5(50-x)=264
解得:x=14
50-14=36(千克)
2)當第一次購買香蕉少於20千克,第二次香蕉超過40千克的時候,設第一次購買x千克香蕉,第二次購買(50-x)千克香蕉,根據題意,得:
6x+4(50-x)=264
解得:x=32(不符合題意)
答:第一次購買14千克香蕉,第二次購買36千克香蕉
例三:(2005年湖北省荊門市)參加保險公司的醫療保險,住院治療的病人享受分段報銷,保險公司制定的報銷細則如下表.某人住院治療後得到保險公司報銷金額是1100元,那麼此人住院的醫療費是( )
住院醫療費(元) 報銷率(%)
不超過500元的部分 0
超過500~1000元的部分 60
超過1000~3000元的部分 80
……
A、1000元 B、1250元 C、1500元 D、2000元
解:設此人住院費用為x元,根據題意得:
500×60%+(x-1000)80%=1100
解得:x=2000
所以本題答案D。
三、 方案型
方案型一元一次方程解應用題往往給出兩個方案計算同一個未知量,然後用等號將表示兩個方案的代數式連結起來組成一個一元一次方程。
例四:(2005年泉州市)某校初三年級學生參加社會實踐活動,原計劃租用30座客車若干輛,但還有15人無座位。
(1)設原計劃租用30座客車x輛,試用含x的代數式表示該校初三年級學生的總人數;
(2)現決定租用40座客車,則可比原計劃租30座客車少一輛,且所租40座客車中有一輛沒有坐滿,只坐35人。請你求出該校初三年級學生的總人數。
分析:本題表示初三年級總人數有兩種方案,用30座客車的輛數表示總人數:30x+15
用40座客車的輛數表示總人數:40(x-2)+35。
解:(1)該校初三年級學生的總人數為:30x+15
(2)由題意得:
30x+15=40(x-2)+35
解得:x=6
30x+15=30×6+15=195(人)
答:初三年級總共195人。
四、 數據處理型
數據處理型一元一次方程解應用題往往不直接告訴我們一些條件,需要我們對所給的數據進行分析,獲取我們所需的數據。
例五:(2004年北京海淀區)解應用題:2004年4月我國鐵路第5次大提速.假設K120次空調快速列車的平均速度提速後比提速前提高了44千米/時,提速前的列車時刻表如下表所示:
行駛區間 車次 起始時刻 到站時刻 歷時 全程里程
A地—B地 K120 2:00 6:00 4小時 264千米
請你根據題目提供的信息填寫提速後的列車時刻表,並寫出計算過程.
行駛區間 車次 起始時刻 到站時刻 歷時 全程里程
A地—B地 K120 2:00 264千米
解:
行駛區間 車次 起始時刻 到站時刻 歷時 全程里程
A地—B地 K120 2:00 4:24 2.4小時 264千米
分析:通過表一我們可以得知提速前的火車速度為264÷4=66千米/時,從而得出提速後的速度,再根據表二已經給的數據,算出要求的值。
解:設列車提速後行駛時間為x小時. 根據題意,得
經檢驗,x=2.4符合題意.
答:到站時刻為4:24,歷時2.4小時
例六:(2005浙江省)據了解,火車票價按「 」的方法來確定.已知A站至H站總里程數為1 500千米,全程參考價為180元.下表是沿途各站至H站的里程數:
車站名 A B C D E F G H
各站至H站的里程數(單位:千米) 1500 1130 910 622 402 219 72 0
例如,要確定從B站至E站火車票價,其票價為 (元).
(1) 求A站至F站的火車票價(結果精確到1元);
(2) 旅客王大媽乘火車去女兒家,上車過兩站後拿著火車票問乘務員:我快到站了嗎?乘務員看到王大媽手中票價是66元,馬上說下一站就到了.請問王大媽是在哪一站下車的?(要求寫出解答過程).
解: (1) 解法一:由已知可得 .
A站至F站實際里程數為1500-219=1281.
所以A站至F站的火車票價為 0.12 1281=153.72 154(元)
解法二:由已知可得A站至F站的火車票價為 (元).
(2)設王大媽實際乘車里程數為x千米,根據題意,得: .
解得 x= (千米).
對照表格可知, D站與G站距離為550千米,所以王大媽是D站或G站下的車.
代數第六章能力自測題
一元一次不等式和一元一次不等式組
初中數學網站http://emath.126.com
分式方程
(一)填空
關於y的方程是_____.
(二)選擇
A.x=-3; B.x≠-3;
C.一切實數; D.無解.
C.無解; D.一切實數.
A.x=0; B.x=0,x=1;
C.x=0,x=-1; D.代數式的值不可能為零.
A.a=5; B.a=10;
C.a=10; D.a=15.
A.a=-2; B.a=2;
C.a=1; D.a=-1.
A.一切實數; B.x≠7的一切實數;
C.無解; D.x≠-1,7的一切實數.
A.a=2; B.a只為4;
C.a=4或0; D.以上答案都不對.
A.a>0; B.a>0且a≠1;
C.a>0且a≠0; D.a<0.
A.a<0; B.a<0或a=1;
C.a<0或a=2; D.a>0.
(三)解方程
51.甲、乙兩人同時從A地出發,步行30千米到B地甲比乙每小時多走1千米,結果甲比乙早到1小時,兩人每小時各走多少千米?
http://219.226.9.43/Resource/CZ/CZSX/DGJC/CSSX/D2/math0003ZW1_0019.htm
3. 適合中學生使用的計算器
初中生的話卡西歐82ES就夠了,如果初中要弄弄競賽什麼的,用卡西歐991PLUS吧